% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z % Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z % Digits 0 1 2 3 4 5 6 7 8 9 % Exclamation ! Double quote " Hash (number) # % Dollar $ Percent % Ampersand & % Acute accent ' Left paren ( Right paren ) % Asterisk * Plus + Comma , % Minus - Point . Solidus / % Colon : Semicolon ; Less than < % Equals = Greater than > Question mark ? % At @ Left bracket [ Backslash \ % Right bracket ] Circumflex ^ Underscore _ % Grave accent ` Left brace { Vertical bar | % Right brace } Tilde ~ % ---------------------------------------------------------------------| % --------------------------- 72 characters ---------------------------| % ---------------------------------------------------------------------| % % Optimal Foraging Theory Revisited: Appendix. Lemma about Ratios % (note: this material not included in final version of document) % % (c) Copyright 2007 by Theodore P. Pavlic % \chapter{A Lemma: Relationships Between Ratios} \label{app:lemma_proof} Take an ordered field $(\set{F},{\leq})$ with additive identity $0 \in \set{F}$. Also take relation ${\vartriangleright} \in \{{=},{<},{>},{\leq},{\geq}\}$. Let $a,b,c,d,p \in \set{F}$ with $bd>0$ (\ie, $b$ and $d$ have the same ordering with $0$) and $p \geq 0$ and assume that $a/b \vartriangleright c/d$. This implies that $ad \vartriangleright bc$. Therefore, % \begin{equation*} ad + pab \vartriangleright bc + pab \quad \text{ and } \quad ad + pdc \vartriangleright bc + pdc \end{equation*} % and so % \begin{equation*} a ( d + pb ) \vartriangleright b ( c + pa ) \quad \text{ and } \quad d ( c + pa ) \vartriangleright c ( d + pb ) \end{equation*} % Thus, % \begin{equation} \frac{a}{b} \vartriangleright \frac{ c + pa }{ d + pb } \quad \text{ and } \quad \frac{ c + pa }{ d + pb } \vartriangleright \frac{c}{d} \label{eq:lemma_forward} \end{equation} % By working in reverse, it is easy to show that either of the two statements in \longref{eq:lemma_forward} imply that $a/b \vartriangleright c/d$. Therefore, % \begin{equation} \frac{a}{b} \vartriangleright \frac{c}{d} \iff \frac{a}{b} \vartriangleright \frac{ c + pa }{ d + pb } \iff \frac{ c + pa }{ d + pb } \vartriangleright \frac{c}{d} \label{eq:lemma_field} \end{equation} % %Defining $\set{F} \triangleq \R$ and ${\vartriangleright} \triangleq %{\geq}$ makes \longref{eq:lemma_field} equivalent to the statement in %\longref{eq:lemma}.